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A Brief History of MapReduce
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The Need for Unification (1/2)
n Big Data Analytics stack BEFORE Spark/BDAS

Batch stack
(e.g., Hadoop MR)

Logs

De
m

ux

Streaming stack
(e.g., Storm)

Real-Time 
Analytics

Ad-Hoc queries
on historical data

Interactive queries
on historical data

Interactive queries (e.g., HBase, 
Impala, SQL)

Challenges:
»Need to maintain three separate stacks

• Expensive and complex
• Hard to compute consistent metrics across stacks 

»Hard and slow to share data across stacks



Spark 5

The Need for Unification (2/2)

n Make real-time decisions
n Detect DDoS, Fraud, etc

n E.g.,: what’s needed to detect a DDoS attack?
1. Detect attack pattern in real time à streaming

2. Is traffic surge expected? à interactive queries
3. Making queries fast à pre-computation (batch)

n And need to implement complex algos (e.g., ML)! 
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Goal of the Berkeley Data Analytics Stack 
(BDAS) Project by AMPLab @ UCB

Batch

Interactive Streaming

Single
Stack! 

• Support batch, streaming, and interactive computations…
… and make it easy to compose them

• Easy to develop sophisticated algorithms (e.g., graph, ML 
algos)
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The Berkeley AMPLab (2011-2017)

n Governmental & industrial funding:

Goal: Next generation of open source data 
analytics stack for industry & academia:
Berkeley Data Analytics Stack (BDAS)

lgorithms

achines eople
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A Brief History of Spark
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A Brief History of Spark
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A Brief History of Spark
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Data Processing Stack

Data Processing Layer

Resource Management Layer

Storage Layer
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Hadoop Stack

Data Processing Layer

Resource Management Layer

Storage Layer

…

Hadoop MR

Hive Pig
HBase Storm

HadoopYARN

HDFS, S3, … 
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BDAS

Data Processing Layer

Resource Management Layer

Storage Layer

Mesos

Spark

Spark
Streaming Spark SQL

BlinkDB
GraphX

MLlib

KeystoneML

HDFS, S3, … 
Tachyon
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How do BDAS & Hadoop fit together?

Mesos Mesos

Spark

Spark
Streaming Spark SQL

BlinkDB
GraphX

MLlib

MLBase

HDFS, S3, … 
Tachyon

HadoopYarn

Hadoop MR

Hive Pig
HBase StormSpark

SQL

Spark 
Streaming

Graph 
X ML

library

BlinkDB MLbase

Spark
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Apache Mesos
(http://mesos.apache.org)

httphtt
¢ Another competing Cluster Resource Management software

¢ Enable multiple frameworks to share same cluster resources 
(e.g., MapReduce, Storm, Spark, HBase, etc)

¢ Originated from UCBerkeley’s BDAS project ;
l B. Hindman et al, “Mesos: A Platform for Fine-Grained Resource Sharing in the Data 

Center”, Usenix NSDI 2011.  

¢ Hardened via Twitter’s large scale in-house deployment 
l 6,000+ servers, 
l 500+ engineers running jobs on Mesos

¢ Third party Mesos schedulers 
l AirBnB’s Chronos ; Twitter’s Aurora

¢ Mesospehere: startup to commercialize Mesos 

Mesos
Spark

Spark
Stream. Spark 

SQL

BlinkDB
GraphX

MLlib
MLBase

HDFS, S3, … 
Tachyon
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Apache Spark
n Distributed Execution Engine

n Fault-tolerant, efficient in-memory storage (RDDs)
n Powerful programming model and APIs (Scala, Python, 

Java)
n Fast: up to 100x faster than Hadoop
n Easy to use: 5-10x less code than MapReduce
n General: support interactive & iterative apps

Mesos
Spark

Spark
Stream. Spark 

SQL

BlinkDB
GraphX

MLlib
MLBase

HDFS, S3, … 
Tachyon
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Spark Streaming

n Large scale streaming computation
n Implement streaming as a sequence of <1s jobs

n Fault tolerant
n Handle stragglers
n Ensure “exactly once” semantics

n Integrated with Spark: unifies batch, interactive, and 
batch computations
n Initially, Spark realized streaming in form of “micro-batched” 

processing and was not truly msec-type “real-time”.
n Since 2018 (ver2.2), Spark started to support low-latency 

streaming under the name of “Continuous Processing 
Mode”.

Mesos
Spark

Spark
Stream

. Spark SQL
BlinkDB

GraphX
MLlib

MLBase

HDFS, S3, … 
Tachyon
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Unified Programming Models

n Unified system for 
SQL, graph 
processing, 
machine learning

n All share the 
same set of 
workers and 
caches

def logRegress(points: RDD[Point]): Vector {                                    
  var w = Vector(D, _ => 2 * rand.nextDouble - 1)                               
  for (i <- 1 to ITERATIONS) {                                                  
    val gradient = points.map { p =>                                            
      val denom = 1 + exp(-p.y * (w dot p.x))                                   
      (1 / denom - 1) * p.y * p.x                                               
    }.reduce(_ + _)                                                             
    w -= gradient                                                               
  }                                                                             
  w                                                                             
}                                                                               
                                                                                
val users = sql2rdd("SELECT * FROM user u                                       
   JOIN comment c ON c.uid=u.uid")                                              
                                                                                
val features = users.mapRows { row =>                                           
  new Vector(extractFeature1(row.getInt("age")),                                
             extractFeature2(row.getStr("country")),                            
             ...)}                                                              
val trainedVector = logRegress(features.cache())
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Performance and Generality
(Unified Computation Models)

Interactive
(SQL, Shark)
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Compatibility to existing  (non-Spark) Ecosystem

Resource Management Layer

Storage Layer

Mesos

Spark

Spark
Streaming Spark SQL

BlinkDB
GraphX

MLlib

MLBase

HDFS, S3, … 
Tachyon

Accept inputs from
Kafka, Flume, Twitter, 
TCP Sockets, …

Hive API

GraphLab API

HDFS API

Support Hadoop, 
Storm, MPI
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Highly Visible Industrial Impact

Recently renamed to:
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Rapid Adoption

n Train > 10K people via 
Tutorials in AMPCamp 1-
6, Strata, Spark Summits 
and MOOCs 

n 42K+ Spark Meetup 
members

n 600+ Contributing 
Developers to codebase   

Mesos
Spark

Spark
Stream. Spark SQL

BlinkDB
GraphX

MLlib
MLBase

HDFS, S3, … 
Tachyon
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Highly Visible Industrial Impact –
Large Scale Usage
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Spark Ecosystems
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BDAS Summary 

n BDAS: address next Big Data challenges
n Unify batch, interactive, and streaming 

computations
n Facilitate the development of 

sophisticate applications
n Support graph & ML algorithms, approximate queries 

n Witnessed significant adoption
n Many more additional systems built on the top of 

(and around) Spark within the BDAS:
n Spark Streaming, GraphX, KeystoneML, MLbase, 

Spark SQL, BlinkDB, Tachyon, Succinct…

Batch

Interactive Streaming

Spark
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Key Features of Spark
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Programming Language Support by Spark
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BDAS (since Nov 2016) 
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Spark
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Spark as the Core Distributed Processing Engine 
of BDAS

Data Processing Layer

Resource Management Layer

Storage Layer

Mesos

Spark

Spark
Streaming Spark SQL

BlinkDB
GraphX

MLlib

KeystoneML

HDFS, S3, … 
Tachyon
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Motivation

Many of the previous cluster programming models 
are based on directed acyclic data flow from stable 
storage to stable storage, e.g. MapReduce, Dryad, 
Tez, SQL
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Motivation

Many of the previous cluster programming models 
are based on directed acyclic data flow from stable 
storage to stable storage, e.g. MapReduce, Dryad, 
Tez, SQL

Benefits of data flow: runtime can decide 
where to run tasks and can automatically 
recover from failures
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Motivation (cont’d)

n Although Acyclic data flow is a powerful abstraction, 
it is NOT efficient for applications that repeatedly 
reuse a Working-Set of data:
>> Iterative algorithms (machine learning )
>> Interactive data mining tools (R, Excel, Python)

n With previous frameworks, apps reload data from 
stable storage on each query
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Data Sharing 
n MapReduce: Sharing via Disk I/O

n Spark: In-memory Sharing (Fast Disk-based sharing 
as well)
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Examples on the Performance Edge of
Spark over MapReduce 

on some common Iterative Algorithms

Time per Iteration (s)
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Key Ideas behind Spark’s Solution: 
Data Flow Model + Resilient Distributed Datasets

n Augment Data Flow model with “Resilient 
Distributed Datasets” (RDDs)

n Combine Data Flow with RDDs to unify many 
cluster programming models
n Instead of specialized APIs for one-type of apps, give 

users 1st-class control of Distributed Datasets
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n Spark makes Working Datasets a first-class concept to 
efficiently support In-memory Data-Sharing across 
(different iterations/ stages of ) apps

n Provide Distributed Memory Abstractions (called Resilient 
Distributed Datasets - RDDs) for clusters to support apps 
with Working Sets
n Work with distributed collections as you would with local ones

n Retain the attractive properties of MapReduce:
n Fault tolerance (for crashes & stragglers)
n Data locality
n Scalability

n Enhance programmability:
n Integrate into Scala programming language
n Allow interactive use from Scala interpreter

Key Ideas behind Spark
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Outline

n Introduction to Functional Programming & Scala
n Spark’s Resilient Distributed Datasets (RDDs)
n Implementation 
n Conclusion
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A Brief History: 
Functional Programming for Big Data
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A Brief History: 
Functional Programming for Big Data
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A Brief History: 
Functional Programming for Big Data
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Why Functional Programming is a good fit for 
Parallel, Concurrent, Fault-Tolerant Computing ?

Source: Odersky’s OSCON 2011 keynote: https://www.youtube.com/watch?v=3jg1AheF4n0

https://www.youtube.com/watch?v=3jg1AheF4n0
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A Brief History: 
Functional Programming for Big Data
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High-level language for JVM
>> Object-Oriented + Functional programming (FP)
>> Designed by Martin Odersky of EPFL in 2001 ; 

First public release in 2004.
>> Odersky founded Typesafe in 2011 to provide commercial support of 

Scala
Statically typed

>> Comparable in speed to Java
>> no need to write types due to type inference

Interoperates with Java
>> Can use any Java class, inherit from it, etc;
>> Can also call Scala code from Java

Where to learn more 
>>Odersky’s Scala course on 

Coursera:https://www.coursera.org/course/progfun
>>Odersky’s OSCON 2011 keynote on why Functional Programming & Parallel-

processing is a good fit: https://www.youtube.com/watch?v=3jg1AheF4n0

About Scala

https://www.coursera.org/course/progfun
https://www.youtube.com/watch?v=3jg1AheF4n0
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Quick Tour of Scala
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Quick Tour of Scala (cont’d)
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All of these leave the list unchanged (List is 
Immutable)

Quick Tour of Scala (cont’d)
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Scala Closure Syntax (cont’d)
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Scala Cheat Sheet

Variables:
var x: Int = 7
var x = 7     // type inferred

val y = “hi” // read-only

Functions:
def square(x: Int): Int = x*x

def square(x: Int): Int = {
x*x   // last line returned

}

Collections and closures:
val nums = Array(1, 2, 3)

nums.map((x: Int) => x + 2) // => Array(3, 4, 5)

nums.map(x => x + 2)  // => same
nums.map(_ + 2)       // => same

nums.reduce((x, y) => x + y) // => 6
nums.reduce(_ + _)           // => 6

Java interop:
import java.net.URL

new
URL(“http://cnn.com”).openStream()

More details:
scala-lang.org

http://www.scala-lang.org
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Other Scala Collection Methods More details:
scala-lang.org

http://www.scala-lang.org
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Outline

n Introduction to Functional programming & Scala
n Spark’s Resilient Distributed Datasets (RDDs) 
n Implementation 
n Conclusion
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n Spark makes Working Datasets a first-class concept to 
efficiently support In-memory Data-Sharing across 
(different iterations/ stages of ) apps

n Provide Distributed Memory Abstractions (called Resilient 
Distributed Datasets - RDDs) for clusters to support apps 
with Working Sets
n Work with distributed collections as you would with local ones

n Retain the attractive properties of MapReduce:
n Fault tolerance (for crashes & stragglers)
n Data locality
n Scalability

n Enhance programmability:
n Integrate into Scala programming language
n Allow interactive use from Scala interpreter

Key Ideas behind Spark
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What are Resilient Distributed Datasets (RDDs) ?
n RDDs are Immutable (i.e. become read-only once 

they are created) collections partitioned across 
cluster that can be rebuilt if a partition is lost

n Created by transforming data in stable storage using 
data flow operators (map, filter, group-by, …)

n The elements of an RDD need not exist in physical 
storage;
n Instead, a handle to an RDD contains enough information 

(aka lineage info) to compute the RDD starting from data in 
reliable storage. 

=>RDDs can always be reconstructed if nodes fail.
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Reap Key Ideas behind Spark’s Solution: 
Data Flow Model + Resilient Distributed Datasets

n Augment Data Flow model with “Resilient 
Distributed Datasets” (RDDs)
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What are RDDs (cont’d) ?
n RDDs that can be cached (aka persist) in RAM 

across parallel operations and to be shared by 
different Apps

n User can control the Partitioning of an RDD, e.g .one 
comprised of <key,value> pairs based on hash or 
range of the key.
n Once partitioned, Spark will remember the way an RDD is 

partitioned and use the info to reduce unnecessary data 
shuffling when operating on RDDs 

n e.g. Functions that benefit from partitioning include: cogroup( ), 
groupWith( ), join( ) , groupByKey( ), reduceByKey( ), 
combineByKey( ), lookup( )

n Spark knows internally which operations may affect 
partitioning, and will automatically set the partitioner of an 
RDD
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RDD Types: Parallelized Collections

n By calling SparkContext’s parallelize method on an 
existing Scala collection (a Seq obj)

n Once created, the distributed dataset can be 
operated on in parallel
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RDD Types: Hadoop Datasets
n Spark supports text files, SequenceFiles, and any 

other Hadoop inputFormat

val distFiles = sc.textFile(URI)

n Other Hadoop inputFormat
val distFile = sc.hadoopRDD(URI)

Local path or hdfs://, s3n://, kfs://
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Programming Model of Spark
n Use Resilient Distributed Datasets (RDDs) as basic 

building blocks
n Perform Parallel Operations on RDDs

Ø Transformations:  Operations to create new RDD(s) from 
existing ones, e.g. map, filter, groupBy, join ;

Ø Actions: Return a result (value) to a driver program after 
running the computation on the RDD or write it to storage, 
e.g.  reduce, collect, count, save …

Ø Transformations are Lazy (They don’t compute right away): 
Ø Spark just remembers the transformations applied to 

datasets(lineage). Only compute when an action 
requires.

n Restricted Shared Variables
n Accumulators, Broadcast variables
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Working with RDDs
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Working with RDDs
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Working with RDDs
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Transformations
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Transformations (cont’d)
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Transformations Examples
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Examples on Set Operations
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Examples on Cartesian product b/w
two RDDs
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More Examples Basic RDD Transformations 
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More Examples Basic RDD Transformations (cont’d) 
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More Transformations Example
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More Transformations Example
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Actions
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Actions (cont’d)
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Examples of Actions on RDDs
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More Examples of Actions on RDDs
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More Action Examples

f
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Transformations & Actions
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Parallel Operations
n reduce: Combines dataset elements using an 

associative function to produce a result at the 
driver program.

n collect: Sends all elements of the dataset to the 
driver program. 
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Example: Log Mining w/  Spark in Scala
n Load error messages from a log into memory, 

then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(‘\t’)(2))

cachedMsgs = messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

cachedMsgs.filter(_.contains(“foo”)).count()

cachedMsgs.filter(_.contains(“bar”)).count()

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed 
RDD

Cached RDD
Parallel operation

Result: full-text search of Wikipedia in 
<0.5 sec (vs 20 sec for on-disk data)
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Spark in Scala and Java

// Scala:

val lines = sc.textFile(...)
lines.filter(x => x.contains(“ERROR”)).count()

//the line above is the long form of:

// lines.filter(_.contains(“ERROR”)).count()

// Java:

JavaRDD<String> lines = sc.textFile(...);
lines.filter(new Function<String, Boolean>() {

Boolean call(String s) {
return s.contains(“error”);

}
}).count();
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Same Example in Python

Load error messages from a log into memory, 
then interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()
Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda s: “foo” in s).count()

messages.filter(lambda s: “bar” in s).count()

. . .

tasks

results
Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Result: full-text search of Wikipedia in < 1 sec 
(vs 20 s for on-disk data)

Result: scaled to 1 TB data in 5 sec
(vs 180 sec for on-disk data)
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Working with Key-Value Pairs

n Spark’s “distributed reduce” transformations 
operate on RDDs of key-value pairs

n Python: pair = (a, b)
pair[0] # => a 

pair[1] # => b

n Scala: val pair = (a, b)
pair._1 // => a
pair._2 // => b

n Java: Tuple2 pair = new Tuple2(a, b); 
pair._1 // => a
pair._2 // => b



Spark 82

Examples of Transformations on Pair RDDs
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More Examples of Transformations on Pair RDDs
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More Examples of Transformations on Pair RDDs

See https://www.tutorialspoint.com/scala/scala_options.htm for more details on Some( )

https://www.tutorialspoint.com/scala/scala_options.htm
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Example of using combineByKey to compute 
Per-key averaging for Pair RDDs in Python or Scala
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Examples of combineByKey for Pair RDDs in Java
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Examples of Filtering on Values of a Pair-RDD
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Examples of Per-key Averaging
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The Word Count Example in Python or Scala
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The Word Count Example (w/ Scala shorthand):
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The Word Count Example in Java
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A Complete Example of Word-Count w/ Spark
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Changing the Persistence of RDD
n By default, RDDs are lazy and ephemeral.
n User can alter the persistence of an RDD through two 

actions:
n Cache action: By calling the persist( ) method, user provides 

the hints that the RDD should be kept in memory after the 
first time it is computed, because it will be reused.

n Save action: evaluates the dataset and writes it to a 
distributed filesystem such as HDFS

n Spark keeps persistent RDDs in memory by default, 
but it can spill them to disk if there is not enough RAM.

n Users can set a persistence priority on each RDD to 
specify which in-memory data should spill to disk first.
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Memory Management in Spark
Spark provides three options for persist RDDs:
(1) In-memory storage as deserialized Java Objects

>> fastest, JVM can access RDD natively
(2) In-memory storage as serialized data

>> space limited, choose another efficient 
representation, lower performance 

(3) On-disk storage
>> RDD too large to keep in memory, and costly 

to recompute
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Persistence Levels in Spark
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Behavior with Less RAM
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RDDs vs. Distributed Shared Memory

Aspect RDDs DSM
Reads Coarse- or fine-grained Fine-grained
Writes Coarse-grained Fine-grained
Consistency Trivial(immutable) Up to app / runtime
Fault recovery Fine-grained and low-

overhead using lineage
Requires checkpoints 
and program rollback

Straggler mitigation Possible using backup 
tasks

Difficult

Work placement Automatic based on data 
locality

Up to app (runtimes aim 
for transparency)

Behavior if not enough 
RAM

Similar to existing data 
flow systems

Poor 
performance(swapping ?)
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n An RDD has enough information about how it was 
derived from other datasets (aka its lineage).
n RDD’s Lineage info can be used to reconstruct lost 

partitions

RDD Fault Tolerance
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(Same Example in Python)

msgs = textFile.filter(lambda s: s.startsWith(“ERROR”))
.map(lambda s: s.split(“\t”)[2])

HDFS File Filtered RDD Mapped RDD
filter

(func = _.contains(...))
map

(func = _.split(...))
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Example 2 of RDD

n These datasets will be stored as a chain of objects 
capturing the lineage of each RDD. Each dataset 
object contains a pointer to its parent and 
information about how the parent was transformed.
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Lineage Chain of Example2
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Example 3 of RDD
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Lineage Chain of Example 3
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What is an RDD ?

A: Distributed Collection of Objects on disks 

B: Distributed Collection of Objects in memory

C: Distributed Collection of Objects in Cassandra

nAnswer: Could be any of the above. 
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What is an RDD ?
n Scientific Answer: RDD is an Interface !
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Interface used to represent RDDs

Operation Meaning

partitions() Return s list of partition objects

preferredLocations(p) List nodes where partition p can be 
accessed faster due to data locality

dependencies() Return a list of dependencies

iterator(p, parentIters) Compute the elements of partition p 
given iterators for its parent partitions

partitioner() Return metadata specifying whether 
the RDD is hash/range partitioned
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Example: A HadoopRDD 
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Example: A Filtered RDD 
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RDD Graph (DAG of tasks) 
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Example: A Joined RDD 
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Example: Join and its Operator Graph
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RDD Dependency Types

Each box is an RDD, with partitions shown as shaded rectangles
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Dependencies between RDDs(1)
n Narrow Dependencies: each partition of the parent 

RDD is used by at most one partition of the child 
RDD(1:1). Map leads to a narrow dependency.

n Wide Dependencies: multiple child partitions may 
depend on it(1:N).  Join leads  to wide 
dependencies.
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Dependencies between RDDs(2)

n Narrow dependencies allow for pipelined execution 
on one cluster node, which can compute all the 
parent partitions. For example, one can apply a map 
followed by a filter on an element-by-element basis.

n Wide dependencies require data from all parent 
partitions to be available and to be shuffled across 
the nodes using a MapReduce like operation.

n Recovery after a node failure is more efficient with a 
narrow dependency than the ones with wide 
dependency.
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Advanced Features
n Controllable partitioning

n Speed up joins against a dataset
n Controllable storage formats

n Keep data serialized for efficiency, replicate to multiple 
nodes, cache on disk

n Shared variables: broadcasts, accumulators
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Shared Variables

n Programmers invoke operations like map, filter and 
reduce by passing closures (functions) to Spark. 
Normally, when Spark runs a closure on a worker 
node, these variables are copied to the worker.

n However, Spark also lets programmers create two 
restricted types of shared variables to support two 
simple but common usage patterns.
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Broadcast Variables
n When one creates a broadcast variable b with a 

value v, v is saved to a file in a shared file system. 
The serialized form of b is a path to this file. When 
b’s value is queried on a worker node, Spark first 
checks whether v is in a local cache, and reads it 
from the file system if it isn’t.
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Accumulators

n Each accumulator is given a unique ID when it is 
created. When the accumulator is saved, its 
serialized form contains its ID and the “zero” value 
for its type.

n On the workers, a separate copy of the 
accumulator is created for each thread that runs a 
task using thread-local variables, and is reset to 
zero when a task begins. After each task runs, the 
worker sends a message to the driver program 
containing the updates it made to various 
accumulators.
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A More Sophisticated Example:
Computing PageRank w/ Spark

n Good example of a more complex algorithm
n Multiple stages of map & reduce

n Benefits from Spark’s in-memory caching
n Multiple iterations over the same data

n Demonstrating the Importance of Controlling the 
Partitioning of RDDs for Performance Optimization
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Basic Idea

n Give pages ranks (scores) based on links to them
n Links from many pages è high rank
n Link from a high-rank page è high rank

Image: en.wikipedia.org/wiki/File:PageRank-hi-res-2.png 
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Algorithm

1.0 1.0

1.0

1.0

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 × contribs
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Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 × contribs

1.0 1.0

1.0

1.0

1

0.5

0.5

0.5

1

0.5
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Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 × contribs

0.58 1.0

1.85

0.58
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Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 × contribs

0.58

0.29

0.29

0.5

1.85
0.58 1.0

1.85

0.58

0.5
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Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 × contribs

0.39 1.72

1.31

0.58

. . .
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Algorithm

1. Start each page at a rank of 1
2. On each iteration, have page p contribute

rankp / |neighborsp| to its neighbors
3. Set each page’s rank to 0.15 + 0.85 × contribs

0.46 1.37

1.44

0.73

Final state:
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Naïve Implementation of PageRank in Spark 
(in Scala)

Note: The need of the “case” primitive in scala:
http://danielwestheide.com/blog/2012/12/12/the-neophytes-guide-to-scala-part-4-pattern-matching-anonymous-functions.html
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Naïve Implementation of PageRank in Spark 
(in Scala)

val sc = new SparkContext(“local”, “PageRank”, sparkHome,
Seq(“pagerank.jar”))

val links = // load RDD of (url, neighbors) pairs
var ranks = // load RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
val contribs = links.join(ranks).flatMap {

case (url, (links, rank)) =>
links.map(dest => (dest, rank/links.size))

}
ranks = contribs.reduceByKey(_ + _)

.mapValues(0.15 + 0.85 * _)
}
ranks.saveAsTextFile(...)
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Execution of the Naïve Implementation of 
PageRank in Spark
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An Important (Optimization) Tool: Control the 
Partitioning of RDDs across different nodes
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Join without using partitionBy
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Join after using partitionBy
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Execution Flow of the 2nd Implementation of 
PageRank in Spark
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Yet Another Variation (Trick)
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How does it work ?

n Each RDD has an OPTIONAL Partitioner 
object

n Any shuffle operation on an RDD with a 
Partitioner will respect that Partitioner

n Any shuffle operation on two RDDs will take 
on the Partitioner of one of them, if one is 
set ;
n Otherwise, will use the HashPartitioner by 

default
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Examples of RDD Partitioning 
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PageRank Performance
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How to Customized RDD Partitioning
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Way to find out how an RDD is Partitioned
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A Spark Application
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Execution Process of Spark
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DAG Scheduler of Spark

n Input: RDD and Partitions to compute

n Output: Output from Actions of those Partitions

n Roles: 
n Build stages of tasks
n Submit them to lower level scheduler, (e.g. YARN or 

Mesos, Standalone) as ready 
n Lower level scheduler will schedule data based on 

locality
n Resubmit failed stages if outputs are lost
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Job Scheduler of Spark

n Captures RDD 
dependency graph

n Pipelines functions 
into “stages”

n Cache-aware for 
data reuse & 
locality

n Partitioning-aware 
to avoid shuffles

= cached partition= RDD

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

map
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Outline

n Introduction to Scala & functional programming
n What is Spark
n Resilient Distributed Datasets (RDDs)
n Implementation 
n Conclusion
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Codebase of Spark
Implement Spark Core in about 14,000 Lines of Scala:
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Software Components: How to run Spark ?

n Spark runs as a library in your 
program (1 instance per app)

n Runs tasks locally or on cluster
n Mesos, YARN or standalone 

mode
>> new SparkContext ( masterUrl, 

jobname, [sparkhome], [jars] )

>> MASTER=local[n]  ./spark-shell
>> MASTER=HOST:PORT  ./spark-shell

n Access storage systems via 
Hadoop InputFormat API
n Can use HBase, HDFS, Tachyon, 

S3, Cassandra, …

Your application

SparkContext

Local 
threads

Cluster 
manager

Worker
Spark 

executor

Worker
Spark 

executor

HDFS or other storage
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Add Spark to Your Project
n Scala / Java: add a Maven dependency on

n groupId:   org.spark-project
artifactId: spark-core_2.9.3
version:   0.7.3

n Python: run program with our pyspark script
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import spark.api.java.JavaSparkContext;

JavaSparkContext sc = new JavaSparkContext(
“masterUrl”, “name”, “sparkHome”, new String[] {“app.jar”}));

n import spark.SparkContext
n import spark.SparkContext._

n val sc = new SparkContext(“url”, “name”, “sparkHome”, Seq(“app.jar”))

Cluster URL, or 
local / local[N]

App 
name

Spark install 
path on 
cluster

List of JARs with 
app code (to 

ship)

Create a SparkContext
(Generalized to SparkSession since Spark ver2.0)

https://stackoverflow.com/questions/49574511/what-is-difference-between-sparksession-and-sparkcontext

Sc
al
a

Ja
va

from pyspark import SparkContext

sc = SparkContext(“masterUrl”, “name”, “sparkHome”, [“library.py”]))

Py
th
on
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Getting Started

n Download Spark: 
www.spark.apache.org/downloads.html 

n Documentation and video tutorials: 
www.spark.apache.org/docs/latest

n Other Resources:
www.Databricks.com

spark.apache.org/downloads.html
http://www.spark.apache.org/docs/latest
http://www.Databricks.com
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n Just pass local or local[k] as master URL
n Debug using local debuggers

n For Java / Scala, just run your program in a debugger
n For Python, use an attachable debugger (e.g. PyDev)

n Great for development & unit tests

Local Execution
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Cluster Execution

n Easiest way to launch is EC2:
./spark-ec2 -k keypair –i id_rsa.pem –s slaves \

[launch|stop|start|destroy] clusterName

n Several options for private clusters:
n Standalone mode (similar to Hadoop’s deploy scripts)
n Mesos
n Hadoop YARN

n Amazon EMR: tinyurl.com/spark-emr

http://www.tinyurl.com/spark-emr
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Key Distinctions for Spark vs. MapReduce
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n Scala : OOP + FP
n RDDs: fault tolerance, data locality/ partitioning-

control, scalability
n RDD implemented in Spark using Scala 
n Spark offers a rich API to make data analytics fast: 

both fast to write and fast to run
n Achieves 50 or even 100+ speedups in real applications

n Rapidly growing community

Conclusion for Part I


